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ПРОГНОЗИРОВАНИЕ ВРЕМЕННЫХ РЯДОВ НА ОСНОВЕ ОДИНОЧНЫХ НЕЙРОННЫХ СЕ-
ТЕЙ И КОМИТЕТОВ НЕЙРОННЫХ СЕТЕЙ: СРАВНИТЕЛЬНЫЙ ЭКСПЕРИМЕНТ∗ 

 
Рассматривается задача прогнозирования временных рядов на основе нейросетевых методов. Предлагается ме-

тод формирования комитетов нейросетей на основе оценки степени линейной зависимости выходов одиночных 
нейросетей, входящих в комитет. Проводится экспериментальное сравнение различных типов одиночных нейросе-
тей и комитетов нейросетей на задачах прогнозирования чисел Вольфа и процесса Маккея-Гласса. 
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Введение 
Прогнозирование временных рядов является актуальной научной проблемой, имеющей обширные приложения 

в экономике, физике и других отраслях. Нейронную сеть можно обучить решать задачу прогнозирования времен-
ного ряда на известных примерах, при этом задачу обучения нейронной сети можно рассматривать как задачу мо-
делирования некоторой динамической системы, порождающей этот временной ряд.  

В последнее время, популярным способом повышения качества прогнозирования является использование ко-
митетов нейронных сетей [1-2]. В этом случае, система прогнозирования состоит из нескольких нейросетей, на 
основе выходов которых выполняется принятие финального решения специальным обобщающим модулем. Одна-
ко, всегда ли оправдано такое усложнение?  

Мы провели экспериментальное исследование использования различных архитектур как одиночных нейросе-
тей, так и комитетов нейросетей, обучив в общей сложности более 10000 нейросетей. Эксперименты проводились 
на двух известных временных рядах небольшой длины, похожих по своей форме: числах Вольфа и реализации 
процесса Маккея-Гласса.  

 
 

Постановка задачи 
Временной ряд «Числа Вольфа» представляет собой запись наблюдений количества солнечных пятен за год, 

начиная с 1700 года. Временной ряд «Последовательность Маккея-Гласса» представляет решение нелинейного 
дифференциального уравнения с временной задержкой:  
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Для вычисления временного ряда были использованы следующие значения параметров: 
17,1.0,2.0 === τba .  

   

 
Рис. 1. Временной ряд «Числа Вольфа» (слева), временной ряд «Процесс Маккея-Гласса» (справа). 

 

                                                 
∗ Данная работа выполнена при поддержке международного гранта УНТЦ P-357 (EOARD 088008). 



Оба временных ряда содержат 307 значений, они были нормированы на интервале [-1;1] и разделены на трени-
ровочную, тестовую и экзаменационную части в соотношении 45:20:35. 

Задача для прогнозирования формулируется следующим образом: по известному текущему значению последо-
вательности )(ky   и некоторой предыстории )(),...,2(),1( mkykyky −−−  дать оценку следующего значения 

)1( +ky . Процесс повторяется для всех значений последовательности, у которых есть следующие значения. Дли-
на предыстории m , которая используется для прогнозирования, варьируется. Нейронные сети обучаются на тре-
нировочной части последовательности, далее на тестовой части проводится отбор наилучшей одиночной нейросе-
ти или комитета по среднеквадратичному критерию (Mean Squared Error, MSE): 
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Здесь: N  – количество значений процесса,  )(ny  – реальные значения,  )(* ny  – прогнозируемые значения. 
Одиночная нейросеть или комитет с лучшим результатом на тесте проходит дополнительные испытания на экза-
менационной последовательности. Экзаменационный результат считается окончательным. 
 

 
Одиночные нейронные сети 

В нашей работе мы использовали 5 типов одиночных нейронных сетей: LNN, MLP, DLNN, DMLP, RMLP. LNN 
(Linear Neural Network) представляет собой статический однослойный персептрон с линейной активационной 
функцией [3], MLP (Multilayer Perceptron) [4] это двухслойный персептрон с сигмоидальной активационной функ-
цией в скрытом слое и линейной функцией в выходном слое. Сеть DLNN (Dynamic Linear Network) [5] является 
«динамизированной» версией линейной нейросети LNN, к ее входу добавлена линия задержки, которая, кроме те-
кущего элемента временного ряда подает на вход нейросети некоторое количество задержанных прошлых значе-
ний. Сеть DMLP (Dynamic Multilayer Perceptron) [6] представляет аналогичным образом динамизированный много-
слойный персептрон. Рекуррентная сеть RMLP (Recurrent Multilayer Perceptron) [7] представляет собой сеть DMLP 
с добавленными рекуррентными связями с выхода нейросети на ее вход. Сети LNN и MLP являются статическими 
нейросетями, поскольку используют для прогнозирования только текущего значение временного ряда, в случае 
одиночных нейросетей они рассматриваются в основном из сравнительных мотивов. Сети DLNN, DMLP и RMLP 
являются динамическими нейросетями, благодаря встроенным линиям задержек. 

 

 
Рис. 2. Архитектуры одиночных динамических нейронных сетей. 

 
Во время экспериментов, параметры нейросетей варьировались. В сетях MLP, DMLP, RMLP количество нейро-

нов скрытого слоя изменялось от 5 до 15, обучение велось по методу Левенберга-Марквардта, для каждого типа 
архитектуры было выполнено 10 попыток обучения. В рекуррентных сетях RMLP для коррекции весов использо-
вался механизм обратного распространения во времени BPTT. Количество задержек на входе для сетей DLNN, 
DMLP и RMLP варьировалось от 1 до 10, количество рекуррентных задержек на выходе для сетей RMLP бралось 
от 1 до 5. Всего для каждого из временных рядов была обучена 1 сеть LNN, 110 сетей MLP, 10 сетей DLNN, 1100 
сетей DMLP, 2750 сетей RMLP. Среднеквадратичные ошибки лучших на тесте одиночных нейросетей для каждой 
из опробуемых нейросетевых парадигм представлены в табл. 1-2.  

 
 
 



Таблица 1.  
Среднеквадратичные ошибки лучших одиночних нейросетей на задаче «Числа Вольфа» 

 
Тип нейросети TRAIN TEST VALIDATION 
Single LNN 0.01134 0.01042 0.02276 
Single MLP 0.01063 0.01032 0.02468 
Single DLNN 0.02468 0.00592 0.01166 
Single DMLP 0.00204 0.00400 0.01181 
Single RMLP 0.00214 0.00370 0.01300 

 
 

Таблица 2.  
Среднеквадратичные ошибки лучших одиночних нейросетей на задаче «Процесс Маккея-Гласса» 

 
Тип нейросети TRAIN TEST VALIDATION 
Single LNN 0.018738 0.019297 0.018598 
Single MLP 0.017549 0.01792 0.018866 
Single DLNN 0.00369 0.003339 0.0035374 
Single DMLP 4.13E-06 6.81E-06 1.27E-05 
Single RMLP 1.04E-05 7.69E-06 1.04E-05 

 
Как видно из результатов одиночных нейросетей на экзаменационной выборке, для задачи «Числа Воль-

фа» лучшей архитектурой оказалась линейная нейросеть с задержками DLNN, которая опередила другие, более 
сложные динамические сети. Для задачи «Процесс Маккея-Гласса» лучший результат обеспечила рекуррентная 
динамическая сеть RMLP, обладающая наиболее сложной среди рассматриваемых динамических нейросетей архи-
тектурой. 

 
 
 

Комитеты нейронных сетей 
В нашей работе, комитеты нейронных сетей представляют собой ансамбли из нескольких одиночных нейросе-

тей, независимо решающих задачу прогнозирования (рис. 3). Частные решения одиночных нейросетей 
})1(~...);1(~);1(~{ 21 +++ kykyky P  поступают на обобщающий модуль (Gating module), который выдает окон-

чательное решение )1(~ +ky .  
 

 
Рис. 3. Комитет нейросетей MM (слева), комитет нейросетей MMeX (справа). 

 
Комитеты нейросетей делятся на два типа: MM (“Multi-Modular”), на вход которых поступают только частные 

решения одиночных нейросетей, и MMeX (“Multi-Modular with eXternal inputs”), на вход которых поступают част-
ные решения и элементы исходного временного ряда. В качестве одиночных нейронных сетей использовались взя-
тые из числа обученных для экспериментов с одиночными нейросетями динамические рекуррентные сети типа 
RMLP. В качестве обобщающих модулей были опробованы все 5 типов нейронных сетей, описанных в предыду-
щем разделе. Обобщающие модули обучались прогнозированию с использованием той же обучающей, тестовой и 
экзаменационной выборки, что и одиночные нейронные сети. Для комитетов типа ММ в качестве обобщающих 
модулей были дополнительно опробованы операции усреднения (“Average”) и вычисления медианного значения 
(“Median”). 



Выбор одиночных рекуррентных нейросетей для включения их в комитеты проводился в два этапа: отбор 20-ти 
лучших из 2750 натренированных для каждого временного ряда одиночных нейросетей, и формирование множе-
ства из 5-ти нейросетей, имеющих наименьшую степень взаимной линейной зависимости по выходу. Такой способ 
отбора нейросетей для комитета обеспечивает выбор набора нейросетей с достаточно хорошим качеством прогно-
зирования, дающих ошибки на разных элементах временного ряда, что может быть сглажено обобщающим моду-
лем. 

Для оценки линейной зависимости членов комитета для каждой из 155045
20 =C  возможных комбинаций значе-

ний их выходов на массиве данных TRAIN DATA было рассчитано число обусловленности (condition value) 

min

max

α
α

=cond , где α  – сингулярные числа, которые являются квадратными корнями соответствующих собствен-

ных значений корреляционной матрицы прогнозируемых траекторий. Чем меньше число обусловленности для 
набора векторов, тем меньше степень их линейной зависимости. Для полностью линейно зависимых векторов чис-
ло обусловленности равняется бесконечности, для полностью линейно независимых оно равняется нулю.  

В табл. 3-4 приведены варианты наборов одиночных нейросетей для комитетов. Значения в столбце “Rating 
No.” отвечают номеру нейросети в рейтинге точности прогнозирования среди Top-20 лучших одиночных рекур-
рентных нейросетей. 

 
 

 Таблица 3.  
Наборы  одиночных нейросетей для комитетов на задаче «Числа Вольфа» 

 
Variant 
No. 

Condition 
 value 

NN#1 
Rating 
No. 
 

NN#2 
Rating 
No. 
 

NN#3 
Rating 
No. 
 

NN#4 
Rating 
No. 
 

NN#5 
Rating 
No. 
 

1 16.76 2 4 13 15 16 
2 16.82 2 7 12 13 15 
3 16.91 2 12 13 15 16 
4 16.94 2 5 12 13 15 

 
 

Таблица 4.  
Наборы одиночных нейросетей для комитетов на задаче «Процесс Маккея-Гласса» 

 
Variant 
No. 

Condition 
 value 

NN#1 
Rating 
No. 
 

NN#2 
Rating 
No. 
 

NN#3 
Rating 
No. 
 

NN#4 
Rating 
No. 
 

NN#5 
Rating 
No. 
 

1 960.45 5 10 11 17 20 
2 965.37 7 15 17 19 20 
3 965.70 10 11 17 19 20 
4 966.74 5 10 13 18 20 

 
Из табл. 3-4 видно, что в ни один из отобранных таким способом наборов нейросетей для комитетов не вошла 

первая в рейтинге качества прогнозирования одиночная нейросеть. Вместо этого, каждый вариант комитета имеет 
в своем составе нейросети из последней пятерки рейтинга наилучших 20-ти нейросетей. Это может быть объясне-
но тем, что именно эти сети дают небольшое количество относительно больших ошибок на разных элементах вре-
менного ряда, что согласуется с нашими целями.  

После отбора одиночных нейросетей для комитета, выполнялось обучение обобщающих модулей. Сравнитель-
но малый объем обучающей выборки не позволил применить технику бустинга [8-9]. В комитетах MM MLP, MM 
DMLP, MM RMLP, MMeX MLP, MMeX DMLP, MMeX RMLP количество нейронов скрытого слоя изменялось от 1 
до 5, обучение велось по методу Левенберга-Марквардта, для каждого типа архитектуры было выполнено 2 по-
пытки обучения. В комитетах MM RMLP и MMeX RMLP для коррекции весов использовался механизм обратного 
распространения во времени BPTT. Количество задержек на входе для комитетов MM DLNN, MM DMLP, MM 
RMLP, MMeX DLNN, MMeX DMLP и MMeX RMLP варьировалось от 1 до 10, количество рекуррентных задержек 
на выходе для сетей MM RMLP и MMeX RMLP изменялось от 1 до 5. Всего для каждого из временных рядов было 
обучено 2 комитета с сетью LNN в качестве обобщающего модуля, 20 комитетов с сетью MLP, 20 комитетов с се-
тью DLNN, 200 комитетов с сетью DMLP, 2000 комитетов с сетью RMLP. Результаты лучших на тесте комитетов 
для каждого типа смешивающих модулей представлены в табл. 5-6. 



Таблица 5.  
Результаты лучших комитетов нейросетей на задаче «Числа Вольфа» 

 
Тип комитета TRAIN TEST VALIDATION 

MM Average N/A N/A 0.01653 
MM Median N/A N/A 0.01432 
MM LNN 0.001283 0.008261 0.01930 
MM MLP 0.001279 0.008341 0.01932 
MM DLNN 0.001231597 0.001231 0.02209 
MM DMLP 0.001580308 0.008151 0.03134 
MM RMLP 0.001179236 0.006721 0.02498 
MMeX LNN 0.001297 0.010035 0.04267 
MMeX MLP 0.001287 0.010418 0.04297 
MMeX DLNN 0.00126295 0.010341 0.04305 
MMeX DMLP 0.001279644 0.008606 0.03780 
MMeX RMLP 0.000895341 0.004671 0.05874 

 
 

Таблица 6.  
Результаты лучших комитетов нейросетей на задаче «Процесс Маккея-Гласса» 

 
Тип комитета TRAIN TEST VALIDATION 
MM Average N/A N/A 9.12857E-06 

MM Median N/A N/A 5.81958E-06 

MM LNN 4.45E-06 1.63E-05 4.96907E-05 
MM MLP 9.63401E-07 4.99903E-06 0.1279415 
MM DLNN 3.85456E-06 1.40081E-05 4.25028E-05 
MM DMLP 6.35888E-07 1.05279E-05 1.63934E-05 
MM RMLP 1.13236E-05 9.84379E-06 1.41329E-05 
MMeX LNN 5.83929E-06 8.51037E-06 5.97136E-06 
MMeX MLP 1.3196E-06 4.48807E-06 3.83486E-06 
MMeX DLNN 5.74409E-06 9.12733E-06 6.51437E-06 
MMeX DMLP 1.04589E-06 7.49995E-06 4.60201E-06 
MMeX RMLP 1.09349E-05 1.08614E-05 1.27645E-05 

 
Как видно из результатов комитетов нейросетей на экзаменационной выборке, для задачи «Числа Вольфа» 

лучшим комитетом оказался комитет без внешних входов со статической линейной нейросетью в качестве обоб-
щающего модуля, MM LNN. Более точный прогноз обеспечили операции усреднения и взятия медианного значе-
ния выходов в качестве обобщающих модулей. Результат лучшего комитета оказался почти на 10% хуже, чем ре-
зультат лучшей одиночной нейросети (см. табл. 1). 

Для задачи «Процесс Маккея-Гласса» лучший результат обеспечил комитет с внешними входами со стати-
ческим многослойным персептроном в качестве обобщающего модуля MMeX RMLP. Он превосходит лучшую 
одиночную нейросеть почти на порядок (см. табл. 2). 

  
 

Выводы 
Несмотря на внешнюю схожесть временных рядов чисел Вольфа и процесса Маккея-Гласса, для первого вре-

менного ряда применение комитетов нейросетей ухудшило качество прогнозирования, тогда как для второго вре-
менного ряда – напротив, позволило значительно его улучшить. Это улучшение, по-видимому, носит фундамен-
тальный характер, так как в случае одиночных нейросетей для чисел Вольфа лучшие результаты прогнозирования 
показали нейросети с более простой архитектурой, а для процесса Маккея-Гласса лучшими оказались более слож-
ные рекуррентные нейросети. Интригующей задачей для дальнейших исследований является разработка критерия 
выявления пользы применения комитетов нейросетей для повышения качества прогнозирования. Также, требую-



щим дополнительного исследования вопросом является то, что для обоих временных рядов лучшими нейросете-
выми обобщающими модулями комитетов нейросетей оказались статические, а не динамические нейросети.  
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